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Almost complex structures
that model nonlinear geometries

GEOFFREYMARTIN (*)
Departmentof Mathematics

Universityof Wisconsin-Madison
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Abstract. This article studies a class of connectionsdefined on a symplectic
manifoldwith a Lagrangianfoliation that modelcertainaspectsoflocal differential
geometry. This construction is of interestbecauseit providesa more satisfactory
treatmentof the EquivalencePrinciple in GeneralRelativity,andit offersa new
approachto thestudyofgeometricstructures.Homogeneousdirection-dependent
metricsare studiedusing thesetechniques.Conditionsaregiventhatguaranteethe
existenceof horizontal distributions that generalizethe Levi-Civita and Cartan
connections.

INTRODUCTION

This article studiesa classof almostcomplexconnectionsthat model certain
local computationsof classical differential geometry. Observe the simple fact
that a coordinate chart determinesa local integrableLagrangian distribution
on the cotangentbundlethat is transverseto the vertical. Thisarticle introduces

a technique that allows the manipulationof such distributions in much the
sameway that coordinatesare usedin classicalgeometry.A fact that is brought

out in the following argumentsis that the formulas of classicalgeometryapply
to a classof Lagrangiandistributions that hasasa propersubsetthedistributions

determinedby coordinatecharts.Thus, from the perspectiveof this model, it
makessenseto interpretLagrangiandistributionsasextendedcoordinatesystems.

Onereasonfor studying thesestructuresis that the notionof extendedcoordi-
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nates clarifies certain foundational problems in General Relativity relating to

the equivalenceprinciple. Using this method it is possible to define pseudo-

-gravitational forces in spaceswith non-vanishingcurvature.This is not possible

within the framework of classical geometry since the definition of a pseudo-

-gravitational force requiresthe existenceof a completeset of inertial frames.

Since inertial motion is definedby geodesicinotion, such a set of framesexists

from theclassicalpoint of view only if thespace-timeis flat.

Also there are computational advantagesin applying these techniquesto

the study of Finsler connections.It shall be shown that this method allows the

identification of a large classof connectionsthat possessthe tensorialproperties

of the Rund and Cartan connections. Also, by this method, it is possible to

constructthe Rund andCartanconnectionsfor virtually all homogeneousmetrics

on thevertical distribution of thecotangentbundle.

A number of authorshave usedalmost complex structuresas a tool in the

study of connections~see [11.One difference between this and earlier work

is that this construction does not use the bundle structure of the cotangent

bundle. Geometricstructureson the cotangentbundle are only examplesof this

construction.Many of the resultsgiven hereapply equally well to any symplectic

manifold with a Lagrangianfoliation.

I. SYMPLECTIC AND ALMOST COMPLEX CONNECTIONS

Let M be a C~-manifold. Denotethe ring of C~-functionson M by ,~(M),

the ~~M)-module of C~-vectorfields on M by .~(M),and, in general, the

.~(M)-rnoduleon C~— (m. n)-tensorson M by ~ If X is a distribu-

tion on M, then for any p EM. let X,~,be the subspaceof TM,, determinedby

X. Let ~‘(X) be the vector fields on M with values in X. and, in general. let

,~(fh~(X)be the ,~(M)-moduleof C~— (m, n)-tensorsoverX. If w is a non-

degeneratedifferential 2-form on M. then a distribution X is Lagrangian. if

for every p EM. X~is a maximally isotropic subspace of TM,, relativeto w~.
A pair of distributions (X, Y) that determinea splitting of TM is a Lagrangian

splitting if X and Y are Lagrangiandistributions.

This section studiescertain connectionsassociatedwith geometricstructures

determinedby the triple ((X. Y). g, w). Here w is a nondegeneratedifferential

2-form on M. (X. Y) is a Lagrangiansplitting relative to w. and g is a metric

defined on X. The triple ((X, Y). g. w) shall be referredto as a nonlineargeome-

tn’. ‘1 his terminologyis cnosenbecausesuchgeometricstructurescan ~e associated

with nonlinearconnectionsin tangentbundle.

Example1.]. The classical example of a geometric structure of this type is
Finsler geometry. Here M = T*N for someC~-manifoldN, and w is the cano-
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nical symplectic form. X is the vertical distribution. The metric g along X is
determinedby a homogeneousfunction of degreeone, fE ~(T*AO. For U,

VE eI(X), suchthat U and V are parallel relative to the naturalaffine structure

on X, defineg at p E T*N by g(U, V)~= UVf~2.Assumeg to be nondegenerate.
In classical studiesof Finsler geometry, Y is determinedby the choice of local
coordinateson N.

Example1.2. Let M = T*N and let (X, Y) andw be asin Example1.1. A metric
on N determinesby affine translationa metric q alongX. Let g = e~qfor some

fE ,~(T*N).It shall be seenthat geometricstructuresof this sort arisenaturally
from certain paralleltransportsalong curvesin N.

The geometric structure ((X, Y),g,w) determinesa pair of (1,1)-tensors

(F, J) on M. P is the projection given by the splitting (X, Y) and is chosenso
that ran (F) = Y. Let P’ = 1 — P. J is an almostcomplexstructuredetermined

by the metricalong X and by the pairing of X and Y induced by w. For u E
and a, wEX~define J:Y~-+X~by w(u,v)~,=g(Ju,v)~and J:X~-÷Y~by
w(u,Jw)~=g(u,w)~.It is not hard to seethat JEsp(Th1)and PEcsp(7M)

with conformal factor 1. Here as usual sp(TM) denotesthose A E
that satisfy w(AU, V) + w(U,AV) = 0 for any U, V� et(M) and csp(TM)
denotes those A E9’~”1~(M)that satisfy w(AU, V) + ~.,(U,AV)= kw(U, V)
for somek E IR andany U, VE ~1~(M).Therealnumberk is calledthe conformal
factorofA;see [3] page117.

The fact that JE sp (TM) implies that the metric along X can be extended
to a metric on M that shall also be denoted by g. Define for any u, ve TM~
g(u. v)~= w(u, Ju)~.Note that the orthogonal complementof X,,, is Y,, and

viceversa.

The following constructionsuse the standarddefinition of a linearconnection
on M. A linear connection is a lR-bilinear map V : ~~(M)x ~(M) -+ 91(M) that
satisfies for fE ~(M) (i) V,~V = fV~V and (ii) V~fV =(UJ) V + fV~V.

This definition can be extended to distributions. Let X be a distribution. A

linear connectionalong I is a JR-bilinear map V : 91(X) x 91(X) -# 91(X)
satisfying(i) and(ii) forfE ,~(M).

The first useful connectionassociatedwith ((X, Y),g, w) dependsonly on

(X, Y) and a. It is useful becauseit providesa backgroundwith which to com-
parethe metric connectionsto be introducedshortly.

PROPOSITION 1.2. Let V : 91(M) x 91(M) —.~ 91(M) be the JR-bilinear map

definedasfollows,
(i) For U E 91(X)and VE 91(Y) let V = P[ U, V] andV~U = P1 [V, U].
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(ii) For U, VE 91(X) or U, VE 31(Y) letZbedefinedby i(Z)w = Lui(V)w.
IfU, VE ?f(X) let V~V=P’Z,or if U, VE 81(Y) let VuVPZ.

V is a linear connectionin M that satisfiesVo., = VP = 0.

Proof See [41.

The connectionV is commonly referred to as theBott connection.The Bott

connection is used to construct generalizedaffine extensionsof tensor fields

along the distributions X and Y. A tensor field K is V-parallel along X (or Y)

if V~K= 0 for all UE 91(X) (or 81(Y)).
The integrability of X and Y and the closureof w guaranteethat the torsion

T of V vanishesand that theX,, x X,, and }‘, x }~,componentsof the curvature

R of V vanish. However, the X~x Y componentsof R measurea more subtle

relation between (X. Y) and w. A simple geometric criterion that implies the

vanishing of the A’~x Y,,-cornponentsof R can be statedif it is assumedthat

dw = 0 and that X is integrable. If fE .~(M), let Xf be the vector field that

satisfies i(X~)w df. Also denoteby 9(X) thosefE .~(M)with the property

that Vf= 0 for all VE 91(X).

DEFINITION 1.2. Let X be an integrableLagrangiandistribution of a symplectic

manifold and let k be an integer. A Lagrangian splitting (X, Y) is of order k
if for any U E 91(Y) that is V-parallel alongX, and for any f0,.. . , fk E .~(X),

then [X
0,[X1,..., [Xk, U] . . . ]] = 0.

E.varnple1.3. Let M = T*N and let X and w be as in Example 1.1. If Y is the

distribution of a linearconnection,then(X, Y) is of order 1 relativeto X.

PROPOSITION1.3. If X is integrable and dw = 0, then for UE 91(X) and VE

E 91(Y)R(U, V) = 0 if andonli’ if(X, Y) is of order].

Proof Let f. g E ~(X) and let VE 91(Y) such that V is V-parallel along X.

R(Xf. V)Xg = Vxf(VXg)(Y) — Vv(VXE)(Xf) = Vxf V~~Xg~For U E 31(Y).

w(VXfVVXK.U)Lxjw(IV,XgI. U~_w([Xf,[X~.V], U). Since L~w=O, it

follows (X. Y) is of order I, if andonly if R(Xf, V) = 0. U

When ~ is flat, that is, when R= T= 0, the Lagrangiansplitting is said to

be Heisenberg.
There is a large classof connectionsassociatedwith the metric g that are of

importance here.Theseconnectionsare constructedfrom the connectionsalong

X and Ygiven in thenext proposition.
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PROPOSITION 1.4. For any KE3T~1’2~(X)(or ,9~~~2)(y))there is a connection

D along X (or Y)suchthat for any U, V, W E91(X) (or 91(Y))

(1.1) (D~g)(V,W)= —‘g(K(V, W)+K(W, V), U)

(1.2) T(U,V)= —(K(U,V)—K(V,U)),
2

where T(U, V) = D~V—D~U—P1[U,I’] (or = D~V—D~U—P[U,V]).

Proof By Chnstoffel elimination. .

When a pair of (1, 2)-tensors,K’ E 3T~2~(X)and KE ,9~~~2)(Y),are given,

Proposition 1.4 determinesa pair of connections,D’ along X andD along Y.

This pair canbe extendedto an almostcomplexconnectionon M.

PROPOSITION 1.5. Given a pair of connections (D’,D) determinedby (K’, K),

K’E 310’2~(X)andKE 31fi~2)(y),then the IR-bilinearmapV : 91(M)x 91(M)-s’

-* 81(M) definedby

(i)for UE 91(X) and VE 91(Y), \7~V=—JD’~/VandVvU=—JD
11JU,

(ii) for U, VE 91(X), V~V=D’~Vor for U, yE 91(Y), V~VD~V,
is a connectionon M that satisfiesVP = V/f = 0. Furthermore, if K’ = K = 0,

then V o., = 0.

Proof Similar to Proposition1 .2. U

The connectionV shall be calledthe almost complexconnectionfor ((X, 1),

g, o.) definedby (K’, JO.

A very useful relation existsbetweenthe torsion T of V_and the difference

tensor ~= V —V. Clearly, for UE 91(X) and yE 91(Y), S(U, V) = PT(U, V)

and S(V, U) = P’ T( V, U). However, PT and P’ T also determine the compo-
nentsof S in the X~,x X,, and Y x }~, directions.

PROPOSITION1.6. Let V be the almost complex connectiondefined by the

pair(K’,K),andletS=V —V. For U, V, WE 91(X)

w(W,PT(V,JU)= w(U,JS(V, W))—
(1.3)

— — g(K’(U, W) + K’(W, U), V)
2
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andfor U, V, WE 91(Y)

w(W, P’ T(V, JU)) = w(U, JS(V, W)—
(1.4) 1

— — g(K(U, W) + K(W, U), V).

Proof The proof is a computation that follows from the definition of V and

V..

Example 1.4. Return to Example 1.2. Since the Bott connectionalong X is
the torsion-freemetric connectionalong X induced by q, it follows that the
torsion-free metric connectionalong X induced by g is conformally related
to the Bott connection. This fact and (1.4) imply that for VE 91(X) and UE

E 91(Y)

PT(V, U)= — (—(JUf)JV—(Vf)U+w(U, V)JVf),

whereV f is thegradientoff in the metricg.

An obvious and importantchoice of the (1, 2)-tensors(K’, K) is to set K’ =

= K = 0. In this case Proposition 1.5 implies that Vg = 0. This restrictionalso

has the implication that the torsion T of V determinesthe curvatureof R of

V. To seethis, recall the first Bianchi identity with torsion. Let U, V, WE 91(M)

and let S/’ denote the sum over the cyclic permutationsof U, V, W. The first

Bianchi identity states that

(1.5) ,9°(R(U,V)W) = /J’((V~T)(V,W) — T(U, T(V, W))).

For notationalconveneincedefineQE 31~°’4~(M)byQ(U, V, W,Z) =

(V, W) — T(U, T(V, W))),Z). The next propositionshows that all the compo-

nentsof R canbe expressedin termsof Q, PandJ.

PROPOSITION 1.7. Let V be the almost complexconnectiondefined by (0, 0).
(i) ForU, VE 91(X)andanyZ,WE 81(M)

(1.6) w(R(U,V)Z,W)=Q(U,V,PZ,P’W)+Q(U,V,PW,P1Z),

andfor U, VE 81(Y)andanyZ,WE 11(M)

(1.7) w(R(U, V)Z, W) = Q(U, V, P’Z, PW) + Q(U, V, P’W, PZ).

(ii) For UE 11(X) (or 31(Y))and V, Z, WE 91(Y)(or 91(X))
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w(R(U, V)W,JZ)= —(Q(U,Z, V,JW)+
2

(1.8)
+ Q(U, V, W, JZ) + Q(U, Z, W, JV)).

Proof The proof is a computationbasedupon the isotropy of X and Y, (1.5),

and the symmetry properties of R, that is, w(R(U, V)W,Z)= w(R(U, V)Z, W)

andg(R(U,JT) W,Z)=—g(R(U, V)Z, W). U

2. DIFFERENCETENSORS

This section studies the relationship between connectionsdetermined by
((X, Y), g, w) and connectionsdeterminedby ((X, Y’), g, w). For the rest of
this article it shall be assumedthat X is integrable,and if V is an almostcomplex

connectionfor ((X, Y),g,o.i) defined by (K’, K), then K’ = 0. Theseassump-
tions are not essential,but to proceedwithout them would be cumbersome.
In any event, the important examplessatisfy these conditions.An immediate

consequenceof these restrictionsis that the torsionof V and‘V vanishesalong
X. This implies that, for any p EM, S = V — V is symmetric in the X~XX~-

-direction,andsoby(l.3)for U, V, WE 11(X)

(2.1) w(W,PT(V,JU))= w(V,PT(W,JU)).

Let Yand Y’ be distributionstransversetoX. ThereexistsauniqueAE

such that ran (A) c Xc ker(A) and for all u E )‘i~, u + A~uE 1’. A shall be
called the graphcoordinateof the ordered pair (Y, Y’). Note that if Y and Y’

are LagrangiandistributionsA E sp (TM). Let (F, J) and (F’, /) bethe projections

and complex structuresdefined by ((X, Y),g, w) and ((X, Y’),g, w). It can
be seenthat P’ =P+A and P” =P’ —A,and that J’ :X-+ Y’ is given by J’ =

=J+AJandJ’ : Y’-+Xisgivenbyf’ =JP.

Example2.1. Let M = T*N and let ir : T*N -+ N be the canonical fibration.
Suppose that (x, U) and (x’, U) are chartson T*N derivedfrom charts(y, ir(U))

and (y’, ir(U)) on N. Let 7r
0: 1R~x 1R’~ —* IR” be the projection onto the first

factor, and suppose that o X =3’ o ~r. Let (X0, Y~,)be the canonicalsplitting

of TIR~x IR” given by, for (t, s) E IR” x R”, XØ(f5) = 0 x IR” and ITO(t,s) = JR” x 0,

and let be the associatedprojectionwith ran (Pr,) = L~.Define the distributions
Y and Y’ on U by Y=x

1~Y
0and Y’=x’’~~. To computeA for(Y, Y’),

computeA0 for the orderedpair G’,~.(x a x’’)~1’~).Recall that for (t, s) E x(U)

x ox’
1(t, s) = (y av’1(t), sD(y’ oy1)(t)),
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Df: TIR” -÷ TIRtm is the Jacobianof f: IR” -~ JRtm. For p E U, let x(p) = (t, s)

and let u E beu = (t, s, z, 0). Then

Ao(tS)u= (t, s, 0, D(sD(y’ ov’)D(~’ oy~1)z),

andsoA,, =

PROPOSITION2.1. Let V be the almost complex connectionfor ((X, Y),g, w)
defined by (0, K) and let V’ be the almost complexconnectionfor ((X. Y’),

g. w) defined by (0, K’). If (F, f) and (F’, J’) are the projections and almost
complex structures defined by ((X, Y),g,w) and ((X, Y’),g, w),andA is the
graph coordinateof(Y, Y’), thenS = V’ — V/satisfies

(i) S(U, V)~r0 for U, VE91(X)

(ii) S(V, U) = — (V~4)(U) for VE 91(X), UE 81(Y)
(iii) S(U, V) =—JPS(U,JV) for yE 91(X). UE 81(Y)

(iv) F1S(U, V) =(V~A)(V) JPS(U,JAV)APS(U, V)

for U, VE 91(Y).

Further, if for any U, V, 14’E91(Y), L(U, V)=PK’(P’U,P’V)— K(U, V) and

M(U, V) = — (FT(AV, U) —PT(AU, V) +

(2.2) + JAFT(JV, U) + JAFT(JU, V) —

—JS(AU,JV)—JS(AV,JU)),

then

g(W,PS(U, V)) = — (g(L(U, V), W) —

2

(2.3) —g(L(U, W), V) —g(L(V,W), U)) +

+g(W,M(U, V)).

Proof Denotethe torsion of V by T and the torsion on V’ by T’. (i) is clear,

(ii) follows from (i), the definitionof V, and the formulas forJ’. To see (iii) first

observethe following. (i) and (1.3) imply that for V. WE 91(X) PT’(V,JW) =

=PT(V,JW). Since S(V,U)—S(U, V)= T’(V, U)—T(V,U), it follows that

for yE 11(X) and UE 11(Y) PS(V,U) —PS(U, V) = 0. By (ii) PS(V, U) = 0,

and soP5W, 1/) = 0. Now a computationshows that S~,V) = —JPS(U+AU,

JV +AJV). However, (i) implies PS(AU,AJV)= 0, (ii) implies PS(AU,JV) = 0,
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and the preceding observationimplies PS(U,AJV’)= 0. Therefore,S(U, V) =

= —JPS(U,JV).
To calculateFS(U, V) for U, VE 91(Y), note that PV’: 91(Y) x 91(Y)-÷

-+ 91(Y) is a connectionalong Y. Also observethat since (V’~g)(P’U,P’W) = 0
for V E 91(X) and U, W E 91(Y),F V’ satisfies for U, V, W E .91(Y)

(PV~g)(V,W) = — g(PK’(P’V, P’W) + FK’(P’W, P’V), U).
2

This observationimpliesthatF V’ along Y is definedby K E ,9~12)(Y)

K(W, V)= —(FK’(P’W,F’V) +PK’(P’V,P’W)) +FT’(W, V).

But, PT’(W, V) = PT’(P’W, F’ V) —PT’(P’W, A V) —PT’(AW, P’V), and also

(1.2) implies FT’(P’W, F’ V) = .f (PK’(P’W, P’V) —PK’(P’V, P’W)). Substituting
theseexpressionsinto the expressionfor K gives

K(W, V) = PK’(P’W, F’ V) — FT’(P’W, A V)—FT’(A Li’, P’V).

It now follows by Christoffel elimination that the difference betweenV, and

V’ along Y is given by (2.4). Here the fact that for VE 11(X)and UE 91(Y)
FT’(V, P’U) = PT(V, U) is used to eliminate T’ from the expressionfor K. Also
note that (2.1) and (1.4), imply taht for U, V, WE 11(Y)g(PT(AU, W), V) =

= — g(JS(A U, JV), W) andg(PT(A W, U), V) = — g(JAFT(JV, U), W).

Proposition 2.1 implies the following statementabout the dependenceof
the X,,~componentof the torsionof an almostcomplexconnectionon the choice
of Y. Notice that if X, g, and w remain fixed the Y~~componentof the torsion
is independent of Y.

PROPOSITION2.2. Using the notation of Proposition2.1, let T be the torsion
of V/and/ctT’bet/zetorsionofV’. For VE 81(X) andUE 91(Y),

(2.4) F’~T’(V, U) —FT(V, U) = JPS(U,JV)—(V1,A)(U)—AFT(V, U).

Proof This follows from (ii) and (iii) of Proposition2.1. U

(2.4) can be written in the following equivalentform.

PROPOSITION2.3. With the notation of Proposition 2.1, let V be the Bott con-

nectionfor ((X, Y),g, w) and let V’ be the Bott connectionfor ((I, Y’), g, w).
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If S= V —V and S’ = V’ —V’ then for any U, WE .91(Y) and VE 91(X).

w(V,~‘(P’U,P’W) —S(U,W)) = — w(W,(V~A)(U))—

(2.5) —w(V,N(U, W)) + — (g(L(U,JV~,W)—

—g(L(U, W),JV)+g(L(W,JV), W))

where

N(U, W)= — (PT(AU, W) +PT(AW, U) +JAPT(JW,U) +
2

+ JAPT(JU,W) — JS(AU, JW) — JS(AW, JUfl.

Proof The proof is a rather long computation that relies upon (2.1), (1.3)

and(1.4).

If one applies Proposition 2.3 to the special choice of Y and Y’ given in
Example2.1, one notesthe similarity between(2.5) and the classicalexpression
of the variation of the Christoffel symbolsundera changeof coordinates.For

instance, see [5]. What this suggestsis that computationsinvolving classical
transformationformulas can be extendedto arbitrary Lagrangiandistributions

transverseto the vertical. Notice that in deriving (2.5) the cotangentcondition
d w = 0 was not required. However,this condition doesarisewhenone compu-
tes the difference between the Bott connectionsdeterminedby ((X, Y), g, w)

and((X, Y’), g, w).

PROPOSITION2.4. Let V be the Bott connectionfor ((X, Y),g, w) and let V’
betheBott connectionfor ((I, Y’), g, o4. IfS = V’ — V. then

(i) S(U, V) = 0 for U, yE .1(X)

(ii) S(V, U) = —(V~A)(U) for VE .1(X), UE .91(Y)

(iii) S(U, V) = —(V~A)(U) for UE 91(X), VE .1(Y)

(iv) w(W,FS(U, V))=dw(AU, W, V)—w(V,V~A(U))

for WE .91(X),U, VE 91(Y)

Proof The proofusesthe sametechniquesas Proposition2.1 but is easier. U

3. COVARIANT DERIVATIVES

From the point of view of a classical geometer, covariant geometric objects
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are those objects whosetransformationlaws do not involve secondderivatives
of a coordinatechange. To introduce an analogousconceptinto the present
framework, note that each Heisenberg splitting (X, Y) of TT*N, where X is

the vertical distribution, corresponds to an orbit of charts on N under the action

of the affine group on JR”. Therefore, in view of Example 2.1, a natural extension
of the classicaldefmition of covarianceis to say that a collection of geometric

objects is covariant if each object is independentof the choice of Y used in

its construction.
This section studiesa particular covariant object, namely the covariantderi-

vative. Along with the restrictionson ((I, Y), g, w) introducedin Section 2., in
this sectionassumethatdo. = 0.

DEFINITION 3.1. Let V and V’ be almostcomplex connectionsfor ((X, Y),g, o.)

and ((X, Y’), g, w) respectively,and let V be the Bott connectionfor ((I, Y), g,

o4
(i) V and V’ are covariantly related if for any U, yE 11(Y), suchthat V is

V-parallel along X, then PV. u~~’V =

(ii) V and V’ are semi-covariantlyrelated if for any U, yE 91(Y), then
FV~F’V= VFUV.

Definition 3.1(i) and 3.1 (ii) determine the two most important classesof
connectionsassociatedwith nonlineargeometries.In Finslergeometrythe Rund
connectionis equivalent to a set of covariantlyrelated almostcomplexconnec-
tions; while the Cartan connection is equivalent to a set of semi-covariantly

related almost complex connections.The following proposition constructsa
generalizationof theseobjectsthat is adaptedto the presentsetting.

DEFINITION 3.2. Let (X, Y”) be a fixed Lagrangiansplitting of TM. For a La-
grangiansplitting(X, Y),defineK~E3T~2’1~(Y)andK~Eg’(2D(Y)by

(3.1) K~(U,V) = JAPT(JU, V) + JAPT(JV, U),

(3.2) K~(U,V)=PT(AV, U) —PT(AU,V).

Here A is the graphcoordinateof (Y, Y”), (F, .1) is determinedby ((X, Y),g, w),

and T is the torsion of the almostcomplexconnectionfor ((X, 1),g, w) defined

by (0, 0).

PROPOSITION3.1. If V is the almost complex connection for ((X, Y), g, w)
defined by (0, K~) (or (0, Kr)) and V’ is the almost complex connectionfor

((X, Y’), g, w) defined by (0, Kr.) (or (0, K~)), then V and V are (semi-)
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co variantly related.

Proof Let C be the graphcoordinateof ( Y’, Y”), let B be thegraphcoordinate

of (Y, Y”), and let A be the graphcoordinateof (Y, Y’). The proof is basedon
(2.5). The first step is to computeL(U, V) =FK~(F’U,P’J/)—K~(U,V) for

U, yE 11(Y). The facts that PJ’CF’T’(J’P’U, P’V) = JCF’PT(JU, V), and that

CP’=B—A imply

PK~.(P’U, F’ V~— K~(U, V) = —JAPT(JU, IT) + JAFT(JV, U).

Using (1.3), a calculation shows that in (2.5) the terms in PT and S from L

cancelthetermsinPT andS from N, andso(2.5) reducesto

(3.3) w(V,S’(F’U,P’W)—S(U, W))_w(W.(VvA)(U)).

Since do. = 0, Proposition 2.4(iv) implies thatw(V, PS(U, W)) = — w(W, (V~A)’
(U)). Now if W is V-parallel alongI, it is not hardto seethatP’W is V’-parallel

alongX. Therefore,

FS(U,W)=F(V~,W—VUW)=P(V~÷AUW+AW—VUW).

Substituting this expressioninto (3.3) gives the desiredresult. The proof that

V andV’ are semi-covariantlyrelatedwhenV and V’ are determinedby (0, K}~)
and(0, K~,) is similar. U

An importantfactusedin the proofof Proposition3.1 is that the graphcoordi-
natesA, B, andC of the pairs(Y, Y’), (Y, Y”), and (Y’, Y”) satisfy CF’ = B —A.

Geometricallythis formula is a generalizationof the first derivativeof the cocycle

condition on coordinate charts. Physically it is analogousto the addition law

of velocitiesin GalileanRelativity. Also, note that the methodusedin Proposition
3. 1 to constructcovariantly relatedconnectionsis in spirit similar to the techni-
ques used in classicalgeometry to constructcovariant derivatives. It can be

shown that the aboveconnectionsare the only linear connectionsconstructed
fromPT andA that satisfy Definition 3.1.

4. HOMOGENEITYCONDITIONS

This sectionstudiesthe effectsof homogeneitycriteria on nonlineargeometries.

In this section as in Section 3 assumedo.i = 0. To introducethenotion of homo-
geneity into this construction,fix once and for all an integrable Lagrangian
distribution X and a 1-form a that satisfies (i) a(V) = 0 for VE 91(X) and

(ii) dce = w. The existenceof’X anda implies that if the leavesof X areabsolutely
parallelizable, then M is symplectically equivalent to a cotangentbundle. Let
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Xc, be the vector field alongX definedby i(X0,)w = a. The fact that X~,acts ~

a homogeneityoperatoris suggestedby the fact thatL1o. =

DEFINITION 4.1. Let k be an integer. A pair of Lagrangiandistributions(Y, Y’),

eachtranverseto X, is said to behomogeneousofdegreek if the graphcoordinate
A of (Y, Y’) satisfiesV~A= kA, where V is the Bott connectiondefinedby

(X, Y) andw.

PROPOSITION 4.1. Homogeneity of degree k is an equivalence relation on the set
of Lagrangian distributions transverse to X.

Proof Thisis a consequenceof Proposition2.4. U

If the homogeneityrelationis of degree1, it is possibleto label theequivalence

classesin the following sense.

PROPOSITION4.2. Let (Y, Y’) is homogeneous of degree 1. If V/ and V’ are the
Bott connections defined by Y and Y’ and if F’ is the prQjection defined by
Y’, then V~Xc,= V1: ~Xc,f0~-UE 91(Y).

Proof It is not hard to see that Xc, has the property that V~Xc,= V for VE

E .1(X). Theconclusionfollows from this fact andProposition2.4(iii). U

Proposition4.2 saysthat the 1 -form V/Xc,is pointwiseconstantwhenevaluated

along equivalent degree 1 Lagrangian distributions. In particular, if M = T*N
and a is the canonical I -form, thenVXc, = 0 along the elementsof the degree
1 equivalenceclass that contains the coordinates.In general,call the degree 1

equivalenceclasswith this property the coordinateclass. Denotethe coordinate

class by c~.

Example4.1. In the casewhere M = T*N, q~/ contains elementsthat are not
defined by coordinatecharts on N. Let a be the canonical 1-form and let
be the flow of Xc,. Let Y be a Lagrangianintegrabledistribution. If Y is homo-
geneous,that is Y = Y, then YE ~ A local integralmanifold of Y can be
locally identified with a closed I-form on N. 1-forms determinedby Y are

of interest in relativity becausethey correspondto the local time functions
of synchronousobservers.A setof synchronousobserversshall be calledcomplete
if the correspondingset local time functions locally foliate the light cone. In a
flat space-time, constant time-like linear combinationsof the coordinatefunc-

tionsdeterminea completeset of synchronousobservers.
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DEFINITION 4.2. ((X, Y),g, w) is said to be semi-projectable if there exists an

r E JR suchthat for UE .(Y)

(4.1) PT(Xc,,U)=rU.

whereTis the torsion of thealmost complexconnectiondefinedby (0, 0).

Definition 4.2 is a computationally efficient homogeneitycondition on ((X,

Y). g, w). It is equivalentto the following more naturalcriterion.

PROPOSITiON4.3. ((X, Y),g, w) is semi-projectable if and only if thealmost
complex connection for ((X, Y), g,w) defined by (0, 0) satisfiesfor V E .91(X)

V~X=(1 —r)V.

Proof Easyconsequenceof(4.1) and (1.3). U

Proposition 4.3 shows that semi-projectability is a property of the metric,

and is independentof the choice of Y. The notion of a semi-projectable triple

is weakerthan similar conditions given in [2] and [6] where it is assumed that

r = 0.

Example4.2. If PT is as in example1.4. and if PT is semi-projectable,thenthere

is kE JR so that f= log (pk) where p = q(Xc,. Xc,) 1/2. If q(Xc,,Xc,) <0, then

k
(4.2) PT(V, (J)= —i- (q(JU,Xc,)JV+q(V,Xc,)U—q(JU,V)Z),

andso r = — (k/2).

Given a triple ((X, Y), g, w) and the homogeneityoperator X, the vector

field Z = JXc, is called the dynamical vectorfield determinedby ((X, Y),g, w).

Example4.3. Let M = T*N andlet a be thecanonical 1-form. if X is thevertical

distribution, for p E T*N let 5, : X,,—~-T*N
0,) be the natural identification, and

let : TN~(,,)_+X’~he dual to 5,, If g is a metricalongX, theng inducesa Legen-

dre transformation 1: T*N —* TN as follows. For p E T*N define E X by

i(X~)~p.Let 1(p) = j~X~.For any Z E .91 (T*N) that satisfiesg(Xc,, U) =

= — w(Z, U) for all UE .91(X), it can he seen that 1r~Z= I. Further, if Y is

integrable,then a vector field, that correspondsto the imageof a leaf of Y under

theLegendretransformation1, is ageodesicvector field for thesecondordersystem

determinedby Z. If Y E 4~’~, this setof vector fields canbeviewedas thecoordi-
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natedirectionsof the observerswhosetime functionsare determinedby Y.

When a triple ((X, Y),g,w) is semi-projectablethereisaspecialrelationbetween

Z and the associatedconnection theory. Suppose that YE ~ then V~Z=

= JV~Xc,= JP1T(Xc,, Z), It shall be shown that if r ~ 1, then thereexists Y” E

E such that if C is the graph coordinateof (Y, Y”), then

(4.3) V~Z= (1 — r)JCZ.

Note that this expressionhasthe form of a force law scaledby the realnumber

(1 —r).

LEMMA 4.1. If YE and if ((X, Y),g, w) is semi-projectable,then for any

yE 91(X) and UE 91(Y)(V
1F~T)(V,U) =0.

Proof Let UE 91(Y) be V-parallel along X and let VE 91(X) be V-parallel

along Y. First show that V~Xc,= 0 implies that R(Xc,, U) V = 0. SinceR(X,
U)V=F

1[U, [Xc,,W]] and [U, VIE 91(Y) and [Xc,,U]E 11(Y), this follows by
the Jacobi identity. Next expressR in terms of R and the difference tensor
S= V—V. Using the fact that (4.1) implies that S(Xc,, V) = rV, a computation
shows

~(U, Xc,)V= R(U, Xc,) V + (V~
0,P~~T)(U.V) + rP’ T(U, V).

Also, Q(Xc,, V, U, .1W) = 0 and so by (1.9) R(U, Xc,) V = 0. Therefore (VXc,P’ T)•
(U, V) = — rP’ T(U, V), and a change of connection implies that (v~FL 7)~

~(U,V)=0. a

PROPOSITION4.4. Let ((X, Y), g, w) be semi-projectablewith r * 1 and YE

ThereexistsY’ E &,~independentof the choice of Y such that if C is the graph
coordinateof (Y, Y’), and if T is the torsion of thealmost complexconnectionfor

((X, Y), g, w) definedby (0,0), thenF’ T(Xc,,Z) = (1 — r) C’Z.

Proof Let YE and let H be a hypersurfacetransverseto the flow of Xc,.
For p E H let B,, E sp (TM),,, with ran (B,,) ~ X ~ ker (B,,), such that BZ~=

= F’ T(X0. Z),,. Extend B to M by V -translation along the flow of X,, such that

B = B. It follows from Lemma 4.1 that BZ —F’ T(Xc,,Z) is a solution to
the o.d.e. V~U=2(1 —r)U, and so BZ=P’T(Xc,,Z)everywhere.Define Y’

so that C= (1/(1 —r))B is the graph coordinateof (Y, Y’). For any other
Y” E let S be the difference betweenthe almost complex connectionsV

and V” for ((X, Y),g, w) and((X, Y”),g, w) defined by (0, 0), and let T” be the
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torsion of V’. Then (4.1) implies that S(Z,Z) = 0 andso(2.4) gives (11(1 —r))
P”~T”(X.Z’) = (7—AZ = C”Z” where A and C” are the graph coordinates

of(Y, Y”) and (Y”, Y’). a

DEFINITION 4.3. A semi-projectabletriple is geodesibleif Z is a geodesicvector

field.

Note that (2.4) implies that if Y’ is thedistribution constructedin Proposition

4.4, then((X. Y’). g,w) is geodesible.If r = 1, (2.4) implies that P’-T(X, Z) is
independentof the choiceof Y. Consequently,in this case,if thereis an element

of the coordinateclass for which Z is geodesic,then for every elementof the

coordinate classZ is geodesic.In the caseof geometriesof Example4.3 with
r = 1, it can be seen from (4.2) that for a curve ‘y on N, parallel translation

along57= 11 (~~)projectsto Fermi translationalongy.

E.vample4.4. in relativity a geodesibletriple ((A’, Y’), g, w) with Y’ E and

Y’ integrablerepresentsa completesetof inertial observers.If Z is thedynamical
vector field determinedby a semi-projectabletriple ((A’, Y), g. w) with YE
then (4.3) expressesthe pseudo-gravitationalforce observedby Y, andtherefore

gives a representationof the equivalenceprinciple. When r = 0 andg is the flat
metric, Example2.1 showsthat this relation reducesto the usual representation
of the equivalenceprinciple in flat space. When r = 0 andg is not flat, (4.3) is

still valid. However,a completesetof inertial observescanno longerhe associat-
ed with a singlechart. In this case~‘‘is a distribution whoseinte~a1submanifolds
are solutions to the time independentHamilton-Jacobiequationsdetem~inedby

g.

If ((X, Y), g, w) is semi-projectableand Y E 3I~,,thenundercertainconditions
it is possible to construct from the torsion of the almost complex connection
defined by (0, 0) the graph coordinateof a Lagrangiandistribution Y’ E 4~such

that ((X, Y’), g, w) is geodesible.To see this, introduce the following notation,

For L E.91~
2’2(M)define L :~‘(M)-~.91”’~(M) by L(C) =~6(L®C) where

~ is the contractionof C on the secondandthird entriesof L.

Note that j2 = I® I is the identity, and if A E ~ then I ®A (C) = C~A

andA ® 1(C) = AC.

PROPOSITION4.6. For YE ~ supposethat ((X, Y), g, w) is semi-projectable

with r ~ 1 and let T be the torsion of thealmost complexconnectiondefined

by(0, 0). DefineE E .910’1~(M) by EU= (1/2(1 — r))PT(U, Z) and FE ~“~(M)

bj’

FU= PtT(X,U)+
2(1 —r)
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+ [JPT(P’-T(X , Z), U) + S(P’T(Xc,, Z), JU)],
2(l—r)2

and let H=InEJ+JEnI. (i)If(3r—2)/(2r—2) is not an eigenvalueofJE

and (ii) if the differencebetweenany two eigenvaluesof JE is neverequalto 1,

then 12 + H is invertible and there exists a Lagrangian distribution Y’ E

such that ((X, Y’), g, w) is geodesibleand C = (J2 + ily ‘(F) is thegraph coordi-

nateof(Y, Y’).

Proof (ii) implies j2 + H is invertible and so C is well defined. To verify that

if Y’ is defined relative to Y by C, then ((X, Y’), g, w) is geodesibleand

Y’ E q3’
1~,one mustshow that (I) CEsp(TM), (2) V1C= C, and (3)(l/(l —

-- r)) P-’-T(Xc,,Z) = CZ. (1) follows since(1.3) and (1.4) imply that FE sp (TM)

and that sp(TM) is an invariant subspacefor j2 + H. To prove (2) note that
Proposition 4.3 implies that for U, VE91(X)R(U, V)Xc,=0. Applying block

symmetry along X, this is equivalentto R(Xc,, U) = 0 for UE 21(X). But, (1.6)

and R(Xc,, U) = 0 imply that for UE 11(Y) and VE91(X) (V~PT)(V, U) =

= — FT( V, U). This result implies that ~ = F and V~c,(I
2+ H) = 0, and so

VxC C. (3) follows from (i), as (i) implies that CZ = (11(1 —r))F1T(Xc,,Z)

is the uniquesolution to CZ + H(C)Z = FZ. Finally, if Y” E and if j2 + H”

and F” are constructedfrom the torsion of the almostcomplex connectionfor

((X, Y”), g, w) definedby (0, 0), then(2.4) implies that if C” is the graphcoordi-
nateof (Y”, Y’), then (J2 + H”)(C”) — F” = (12 + H)(C) — F = 0. Since j2 + H

is invertible implies that j2 + H” is invertible, it follows that C” =

= (J2 +H”)~(F”). U

The distribution constructedin Proposition4.6 is the naturalgeneralization

of the horizontaldistribution of the Levi-Civita connectionto nonlineargeome-
tries. It is easyto seethat it agreeswith the horizontaldistribution of the Cartan
connectionin Finsler geometry, and in fact, when this distribution is used in
Proposition 3.1, one obtains Rund and Cartan connectionsfor an arbitrary

semi-projectable triple.
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