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Almost complex structures
that model nonlinear geometries

GEOFFREY MARTIN (*)
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Abstract. This article studies a class of connections defined on a symplectic
manifold with a Lagrangian foliation that model certain aspects of local differential
geometry, This construction is of interest because it provides a more satisfactory
treatment of the Equivalence Principle in General Relativity, and it offers a new
approach to the study of geometric structures. Homogeneous direction-dependent
metrics are studied using these techniques. Conditions are given that guarantee the
existence of horizontal distributions that generalize the Levi-Civita and Cartan
connections.

INTRODUCTION

This article studies a class of almost complex connections that model certain
local computations of classical differential geometry. Observe the simple fact
that a coordinate chart determines a local integrable Lagrangian distribution
on the cotangent bundle that is transverse to the vertical. This article introduces
a technique that allows the manipulation of such distributions in much the
same way that coordinates are used in classical geometry. A fact that is brought
out in the following arguments is that the formulas of classical geometry apply
to a class of Lagrangian distributions that has as a proper subset the distributions
determined by coordinate charts. Thus, from the perspective of this model, it
makes sense to interpret Lagrangian distributions as extended coordinate systems.

One reason for studying these structures is that the notion of extended coordi-
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nates clarifies certain foundational problems in General Relativity relating to
the equivalence principle. Using this method it is possible to define pseudo-
-gravitational forces in spaces with non-vanishing curvature. This is not possible
within the framework of classical geometry since the definition of a pseudo-
-gravitational force requires the existence of a complete set of inertial frames.
Since inertial motion is defined by geodesic motion, such a set of frames exists
from the classical point of view only if the space-tume 1s flat.

Also there are computational advantages in applying these techniques to
the study of Finsler connections. It shall be shown that this method allows the
identification of a large class of connections that possess the tensorial properties
of the Rund and Cartan connections. Also, by this method, it is possible to
construct the Rund and Cartan connections for virtually all homogeneous metrics
on the vertical distribution of the cotangent bundle.

A number of authors have used almost complex structures as a tool in the
study of connections; see [1]. One difference between this and earlier work
is that this construction does not use the bundle structure of the cotangent
bundle. Geometric structures on the cotangent bundle are only examples of this
construction. Many of the results given here apply equally well to any symplectic
manifold with a Lagrangian foliation.

1. SYMPLECTIC AND ALMOST COMPLEX CONNECTIONS

Let M be a C” -manifold. Denote the ring of C”-functions on M by F(M),
the % (M)-module of C*-vector fields on M by Z(M), and, in general, the
% (M)-module on C” — (m, n)-tensors on M by T an. If X is a distribu-
tion on M, then for any p € M. let Xp be the subspace of TMp determined by
X. Let Z(X) be the vector fields on M with values in X, and, in gencral, let
Fmm(xy pe the F(M)-module of C° — (m, n)-tensors over X. If w is a non-
degenerate differential 2-form on M, then a distribution X is Lagrangian. if
for every pe M, Xp is a maximally isotropic subspace ofTMprelative tow,
A pair of distributions (X, Y) that determine a splitting of TM is a Lagrangian
splitting if X and Y are Lagrangian distributions.

This section studies certain connections associated with geometric structures
determined by the triple ((X, Y).g, w). Here w is a nondegenerate differential
2-form on M. (X.Y) is a Lagrangian splitting relative to w. and g is a metric
defined on X. The triple ((X, Y). g. w) shall be referred to as a nonlinear geome-
trv. This terminology is cnosen because such geometric structures can be associated
with nonlinear connections in tangent bundle.

Example 1.1. The classical example of a geometric structure of this type is
Finsler geometry. Here M = T*N for some C~-manifold N, and w is the cano-
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nical symplectic form. X is the vertical distribution. The metric g along X is
determined by a homogeneous function of degree one, fe F(T*N). For U,
Ve Z(X), such that U and V are parallel relative to the natural affine structure
on X, define g at p € T*N by g(U, V)p = UVJ;2. Assume g to be nondegenerate.
In classical studies of Finsler geometry, Y is determined by the choice of local
coordinates on N.

Example 1.2. Let M = T*N and let (X, Y) and w be as in Example 1.1. A metric
on N determines by affine translation a metric g along X. Let g = ¢/¢ for some
€ % (I'*N). It shall be seen that geometric structures of this sort arise naturally
from certain parallel transports along curves in N.

The geometric structure ((X,Y), g, w) determines a pair of (1,1)-tensors
(P,J) on M. P is the projection given by the splitting (X, Y) and is chosen so
that ran (P) = Y. Let P! =1 —P. J is an almost complex structure determined
by the metric along X and by the pairing of X and Y induced by w. Foru € );
and o, weXp define J: Yp—»Xp by w(u,v)p:g(Ju,v)p and .I:Xp—» ); by
w(u,Jw)p:g(u, w)p. It is not hard to see that J€sp(TM) and P € csp (TM)
with conformal factor 1. Here as usual sp (TM) denotes those 4 € 7 (LD(M)
that satisfy w(AU, V) + w(U,AV)=0 for any U, V& Z(M) and csp (TM)
denotes those A €7 V(M) that satisfy w(AU, V) + w(U, AV) = kw (U, V)
for some k€ IR and any U, V€ Z(M). The real number £ is called the conformal
factor of A4; see [3] page 117.

The fact that J €& sp (TM) implies that the metric along X can be extended
to a metric on M that shall also be denoted by g. Define for any u, ve TMp
g(u, v)p: w(u,Jv)p. Note that the orthogonal complement of Xp is Yp and
vice versa.

The following constructions use the standard definition of a linear connection
on M. A linear connection is a IR-bilinear map V : ZWM) x I(M)-»> Z(M) that
satisfies for fe FM) (i) VfU V=fV,V and (i) VyfV=WUNV+rVy, V.
This definition can be extended to distributions. Let X be a distribution. A
linear connection along X is a R-bilinear map V: FX)x ZX) > ZX)
satisfying (i) and (ii) for f& F(M).

The first useful connection associated with ((X, Y), g, w) depends only on
(X, Y) and w. It is useful because it provides a background with which to com-
pare the metric connections to be introduced shortly.

PROPOSITION 1.2. Let ¥V : (M) x X(M)-> X(M) be the R-bilinear map
defined as follows.
(i) ForUe Z(X)and Ve F(Y)let VUVzP[U, V1and VVUzPl[V, Ul
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() For U Ve (XyorU Ve Z(Y)let Z be defined by i(Z)w = L, iNw.
IfU Ve X)) 1etVyV=PZorif U Ve Z(Y)IletV,V=PZ
¥ is a linear connection in M that satisfies Vw = VP = 0.

Proof. See [4]. -

The connection V is commonly referred to as the Bott connection. The Bott
connection is used to construct generalized affine extensions of tensor fields
along the distributions X and Y. A tensor field K is V-parallel along X (or Y)
if V,K =0 forall Ue Z(X) (or Z(Y)). '

The integrability of X and Y and the closure of w guarantee that the torsion
T of ? vanishes and that the Xp X Xp and Yp X Yp components of the curvature
R of V vanish. However, the pr );) components of R measure a more subtle
relation between (X, Y) and w. A simple geometric criterion that implies the
vanishing of the pr)’p-components of R can be stated if it is assumed that
dw = 0 and that X is integrable. If f& #F(M), let Xf be the vector field that
satisfies i(Xf)w = df. Also denote by Z#(X) those f&€ % (M) with the property
that Vf=0forall Ve Z(X).

DEFINITION 1.2. Let X be an integrable Lagrangian distribution of a symplectic
manifold and let k be an integer. A Lagrangian splitting (X, Y) is of order k
if for any U €  (Y) that is V-parallel along X, and for any JA ,f" € F(X),
then [Xfo,[Xf], Ces [ka, uj...11=0.

Example 1.3. Let M= T*N and let X and w be as in Example 1.1. If Y is the
distribution of a linear connection, then (X, Y) is of order 1 relative to X.

PROPOSITION 1.3. If X is integrable and dw = 0, then for Ue Z(X) and V €
€ Z(Y)R(U. V) =0ifand only if (X. Y) is of order 1.

Proof. Let f. g€ %(X) and let V€ Z(Y) such that V is V-parallel along X.
R()_(f, l/)Xg = VXf(VXg)(V) - VV(VXg)(Xf) = fo VVXg: For U € Q’(Y?,
w(VXf VVXg, U)y= LXfo)([V, Xg]. Uy — wi[Xf, [Xg, V1, U). Since fow =0, it
follows (X, Y) is of order 1, if and only ifR(Xf, V)=20. =

When V is flat, that is, when R = T = 0, the Lagrangian splitting is said to
be Heisenberg.

There is a large class of connections associated with the metric g that are of
importance here. These connections are constructed from the connections along
X and Y given in the next proposition.
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PROPOSITION 1.4. For any Ke T 3D(X) (or TUD(Y)) there is a connection
D along X (or Y) such that forany U, V, W € Z(X) (or 2(Y))

1
(1.1) (Dy)(V, W) = ;g(K(V, W)+ KW, 1), U)

1 .
(1.2) rw,v)= ;(K(U, Vy—K(V, Uy,
where T(U, V) = DUV—DVU—PL[U, Vi(or = D,V —D,U—P[U, V).
Proof. By Christoffel elimination. ]

When a pair of (1, 2)-tensors, K' € 7132(X) and K€ 9 VD(Y), are given,
Proposition 1.4 determines a pair of connections, D’ along X and D along Y.
This pair can be extended to an almost complex connection on M.

PROPOSITION 1.5. Given a pair of connections (D', D) determined by (K', K),
K' € 7U0D(Xx) and K € TUD(Y), then the R-bilinear map V : X (M) x T (M) -
> (M) defined by
(i) for Ue Z(X) and V€ X(Y), V¥ =—JD'JV and V,U=—JD_JU,
(i) for U, Ve &X), Y,V =D,V or for U, Ve Z(), V,V =DV,
is a connection on M that satisfies VP =VJ = 0. Furthermore, if K' =K =0,
thenVw = 0.

Proof Similar to Proposition 1.2. ]

The connection V shall be called the almost complex connection for (X, Y),
g, w) defined by (K', K).

A very useful relation exists between the torsion T of V and the difference
tensor § =V —V. Clearly, for Ue Z(X) and V& Z(Y), S(U, V) = PT(U, V)
and S(V, U) = PLT(V, U). However, PT and P*T also determine the compo-
nents of S in the Xp X Xp and Y;} X }; directions.

PROPOSITION 1.6. Let V be the almost complex connection defined by the
pair(K', K), and let S=Y —V. For U, V, WE Z(X)

w(W, PT(V,JU) = w(U,JS(V, W)) —
(1.3) |
- ;g(K'(U, W)+ K'(W, ), V)
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and for U, V, We Z(Y)

w(W, P TV, JU)) = (U, JS(V, W) —

(1.4)
1

Y g(K(U, W) + K(W, D), V).

Proof. The proof is a computation that follows from the definition of V and

V. . ]

Example 1.4. Return to Example 1.2. Since the Bott connection along X is
the torsion-free metric connection along X induced by g, it follows that the
torsion-free metric connection along X induced by g is conformally related
to the Bott connection. This fact and (1.4) imply that for V€ Z(X) and U e
e 24y

1
PT(V,U)= 5y (—UUNITV =V U+ wWU, NIV,

where V fis the gradient of f in the metric g.

An obvious and important choice of the (1, 2)-tensors (K', K) is to set K' =
= K = 0. In this case Proposition 1.5 implies that Vg = 0. This restriction also
has the implication that the torsion T of V determines the curvature of R of
V. To see this, recall the first Bianchi identity with torsion. Let U, V, W& Z(M)
and let ¥ denote the sum over the cyclic permutations of U, V, W. The first
Bianchi identity states that

(1.5) LRWU, MW) = LUV, V. W)y—TWU, TV, W)).

For notational conveneince define Q€ 7 Q9 M) by QU,V, W, Z)= w (L, T)-
(V,Wy—T(U, T(V, W))), Z). The next proposition shows that all the compo-
nents of R can be expressed in terms of Q, Pand J.

PROPOSITION 1.7. Let V be the almost complex connection defined by (0, 0).
() ForU Ve ZX)andany Z We I (M)

(1.6) wRWU, MZW)=QU,V,PZ,P*W)+ Q(U,V,PW, P*Z),

and for U, Ve X(Y)andany Z, We (M)

(1.7) wRWU, VVZ,W)=Q(U, V,P*Z, PW) + Q(U, V, P*W, PZ).
(i) ForUe &(X)(or (YY) and V,Z We Z(Y)(or Z(X))
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1
W(RWU, MW, JZ) = ; QU Z,V,JW) +

(1.8)
+ QU V, W, JZ) + Q(U, Z, W, JV)).

Proof. The proof is a computation based upon the isotropy of X and Y, (1.5),
and the symmetry properties of R, that is, w(R(U, MW, Z) = w(R(U, V)Z, W)
and g(R(U, MW, Z) = —g(R(U, V)Z, W). .

2. DIFFERENCE TENSORS

This section studies the relationship between connections determined by
((X,Y),g, w) and connections determined by ((X,Y"), g, w). For the rest of
this article it shall be assumed that X is integrable, and if V is an almost complex
connection for (X, Y),g, w) defined by (K', K), then K' = 0. These assump-
tions are not essential, but to proceed without them would be cumbersome.
In any event, the important examples satisfy these conditions. An immediate
consequence of these restrictions is that the torsion of ¥V and V vanishes along
X. This implies that, for any peM, S =V —V is symmetric in the X, XX -
-direction, andsoby (1.3)for U, V, W& Z(X)

(2.1) w(W, PT(V,JU)) = w(V,PT(W,JU)).

Let Y and Y' be distributions transverse to X. There exists a unique 4 € g &hagn
such that ran (4) C X C ker(A4) and for all u € Y;}, u+ Apu € Yz;' A shall be
called the graph coordinate of the ordered pair (Y, Y'). Note that if ¥ and Y’
are Lagrangian distributions A € sp (TM). Let (P, J) and (P', J') be the projections
and complex structures defined by ((X, Y),g, w) and ((X,Y'), g, w). It can
be seen that P' =P + A and P'* = P! — A,and that J' : X > Y' is given by J' =
=J+AJandJ' : Y’ — Xisgivenby J' = JP.

Example 2.1. Let M =T*N and let 7 :T*N—> N be the canonical fibration.
Suppose that (x, U) and (x', U) are charts on T*N derived from charts (y, 7(U))
and (y', #(U)) on N. Let My R”x R" - R” be the projection onto the first
factor, and suppose that mjex =y om Let (X, ¥)) be the canonical splitting
of TIR" x IR" given by, for (¢,5) € R" x R”, Xow.s) =0 x R"and Yoo =IR" x 0,
and let £, be the associated projection with ran (£)) = ¥, Define the distributions
Yand Y on Uby Y=x"1,Y, and Y’ :x'_l*)’b. To compute A for (Y, Y'),
compute 4, for the ordered pair (. (x o x"l)*Yb). Recall that for (z,s) € x(U)

xox" (1, 5) = (v oy MDD oy ™D,
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Df :TIR" > TIR™ is the Jacobian of f:IR" > R™. For pe U, let x(p)=(t,s)

and letu € YO(M) beu =(t,s,z,0). Then

Ayt = (8,50, DDy oy HD(y' oy~ H2),

andso 4, = x;lAOX(p)x*.
PROPOSITION 2.1. Let V be the almost complex connection for (X, Y), g, w)
defined by (0, K) and let V' be the almost complex connection for (X.Y"),
g. w) defined by (0, K"). If (P,J) and (P',J') are the projections and almost
complex structures defined by ((X,Y),g, w) and (X, Y'), g, w),and A is the
graph coordinate of (Y, Y'"), then S = V' —V satisfies

(i) S(U, ) =0 for U, V € 20X
(i) SV, U) =—(VVA)(U) forVe (X)), Ue a(Y)
(iii) S(U, V)=—JPS(U,JV) forvVe (X)), Ue Z(Y)

(iv) PrS(U, V) = (Vy (V) —JPS(U, JAV) — APS(U, V)
for U, Ve Z().

Further, if for any U, V, We X(Y), L(U,V)=PK'(P'U,P'V)— KW, V) and
1

MU, V)= -5 (PT(AV,U) —PT(AU, V) +

(2.2) + JAPT(JV,U) + JAPT(JU, V) —
—JS(AU,JV) —JS(AV, JU)Y),
then
1

gW, PS(U, V) = —2‘ (g(LU, ), W)—

(2.3) —g(L(U, W), V) —g(L(V, W), U)) +
+g(W. MU, V).

Proof. Denote the torsion of V by T and the torsion on V' by T'. (i)is clear.
(ii) follows from (i), the definition of V, and the formulas for J'. To see (iii) first
observe the following. (i) and (1.3) imply that for V., We Z(X) PT'(V,JW) =
=PT(V,JW). Since S(V, ) —SWU, V)=T'(V,U)—T(V, U, it follows that
for Ve Z(X) and Ue F(Y) PS(V, Uy—PS(U, V)=0. By (ii) PS(V, U) =0,

and so PS(U, V) = 0. Now a computation shows that S(U, V)= —JPS(U + AU,
JV + AJV). However, (i) implies PS(AU, AJV) = 0, (ii) implies PS(AU, JV) = 0,
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and the preceding observation implies PS(U, AJV) = 0. Therefore, S(U, V) =
=—JPS(U, JV).

To calculate PS(U, V) for U, Ve Z(Y), note that PV': Z(Y) x Z(Y)—~
- Z(Y) is a connection along Y. Also observe that since (V'Vg)(P'U, P'wWy=0
for Ve X)and U, We Z(Y), PV’ satisfiesfor U, V,We Z(Y)

1
(PVy NV, W)= ; g(PK'(P'V,P'W) + PK'(P'W, P'V), U).

This observation implies that P V' along Y is defined by K € 7 1:2(Y),

. 1
KW, V)= ? (PK'(P'W,P'V) + PK'(P'V,P'W)) + PT'(W, V).

But, PT'(W,V)=PT'(P'W,P'V)—PT'(P'W,AV)—PT'(AW,P'V), and also
(1.2) implies PT'(P'W,P'V) = —;— (PK'(P'W,P'V)—PK'(P'V, P'W)). Substituting
these expressions into the expression for K gives

K(W, V)=PK'(P'W,P'V)— PT'(P'W,AV)—PT' (AW, P'V).

It now follows by Christoffel elimination that the difference between V, and
V' along Y is given by (2.4). Here the fact that for V€ Z(X) and U€ Z(Y)
PT'(V,P'U)=PT(V, U) is used to eliminate T’ from the expression for K. Also
note that (2.1) and (1.4), imply taht for U, V, We Z(Y) g(PT(AU, W), V) =
= —g(JE(A U,JV), W)and g(PT(AW, U), V)= — g(JAPTJV, U), W). =

Froposition 2.1 implies the following statement about the dependence of
the Xp-component of the torsion of an almost complex connection on the choice
of Y. Notice that if X, g, and w remain fixed the Yp-component of the torsion
is independent of Y.

PROPOSITION 2.2. Using the notation of Proposition 2.1, let T be the torsion
of Yandlet T be thetorsionof V' ForVe F(X)yand Ue Z(Y),

(2.4) PYT(V,U)—PT(V,U)y=JPS(U,JV)— (VVA)(U) — APT(V, U).
Proof. This follows from (ii) and (iii) of Proposition 2.1. ]
(2.4) can be written in the following equivalent form.

PROPOSITION 2.3. With the notation of Proposition 2.1, let V be the Bott con-
nection for (X, Y), g, w) and let V' be the Bott connection for (X, Y"), g, w).
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If 5=V —~V and §'=V' —V' then for any U, We Z(Y) and V& a(X).
W(V,S'(P'U,P'W)—S(U, W)) = — w(W, (V,A(U)) —

1
(2.5) —w(V,N(U, W) + 5 (g(LU,JN), W) —

—g(L U, W), JV)+g(L(W,JV), W))
where

1
N(U, W)= 5— (PT(AU, W)+ PT(AW, Uy +JAPTUJW, U) +

+ JAPTJU, W) —JS(AU, JW) - JS(AW, JU)).

Proof. The proof is a rather long computation that relies upon (2.1), (1.3)
and (1.4). =

If one applies Proposition 2.3 to the special choice of Y and Y' given in
Example 2.1, one notes the similarity between (2.5) and the classical expression
of the variation of the Christoffel symbols under a change of coordinates. For
instance, see [S]. What this suggests is that computations involving classical
transformation formulas can be extended to arbitrary Lagrangian distributions
transverse to the vertical. Notice that in deriving (2.5) the cotangent condition
dw = 0 was not required. However, this condition does arise when one compu-
tes the difference between the Bott connections determined by ((X, Y), g, w)
and (X, Y"), g w).

PROPOSITION 2.4. Let YV be the Bott connection for (X, Y), g, w) and let V'
be the Bott connection for (X, Y"),g, w). IfS=V' =V, then

(i S, v =0 for U, Ve Z(X)
(i) SV, U) = — (V, AXU) forve £ (X),Ue 7 (Y)
(i) S, v) = —({,AX0) forUe X (X), Ve 2 (Y)

(iv) w(W, PS‘(U, MM =dwdU, W, V) —w(V, VWA(U))
forwe ¥(X), U, Ve 2(Y)

Proof. The proof uses the same techniques as Proposition 2.1 but is easier. =

3. COVARIANT DERIVATIVES

From the point of view of a classical geometer, covariant geometric objects



ALMOST COMPLEX STRUCTURES THAT MODEL NONLINEAR GEOMETRIES 31

are those objects whose transformation laws do not involve second derivatives
of a coordinate change. To introduce an analogous concept into the present
framework, note that each Heisenberg splitting (X, Y) of TT*N, where X is
the vertical distribution, corresponds to an orbit of charts on N under the action
of the affine group on IR". Therefore, in view of Example 2.1, a natural extension
of the classical definition of covariance is to say that a collection of geometric
objects is covariant if each object is independent of the choice of Y used in
its construction.

This section studies a particular covariant object, namely the covariant deri-
vative. Along with the restrictions on ((X, Y), g, w) introduced in Section 2., in
this section assume that dw = 0.

DEFINITION 3.1. Let V and V' be almost complex connections for ((X, Y), g, w)
and ((X, Y'), g, w) respectively, and let ¥ be the Bott connection for (X, 1), g,
w)

(i) V and V' are covariantly related if for any U, V€ Z(Y), such that V' is
¥ -parallel along X, then PV, ALV =,V

(ii) V and V' are semi-covariantly related if for any U, Ve Z(Y), then
PV, UP' V=V, V.

Definition 3.1(i) and 3.1(ii) determine the two most important classes of
connections associated with nonlinear geometries. In Finsler geometry the Rund
connection is equivalent to a set of covariantly related almost complex connec-
tions; while the Cartan connection is equivalent to a set of semi-covariantly
related almost complex connections. The following proposition constructs a
generalization of these objects that is adapted to the present setting.

DEFINITION 3.2. Let (X, Y") be a fixed Lagrangian splitting of TM. For a La-
grangian splitting (X, Y), define K, €7 @D(Y) and K},EF(Z’D(Y) by

(3.1) KY(U, Vy=JAPTJU, V) + JAPT(JV, U),

(3.2) K, (U, V) = PT(AV, U) — PT(AU, V).

Here A is the graph coordinate of (Y, Y"), (P, J) is determined by ((X, Y), g, w),
and T is the torsion of the almost complex connection for (X, Y), g, w) defined
by (0, 0).

PROPOSITION 3.1. If V is the almost complex connection for ((X,Y), g, w)
defined by (0, KY) (or (0, KY)) and V' is the almost complex connection for
(X, Y, g, w) defined by (0, KY,) (or (O, IE'Y,)), then V and V' are (semi-)
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covariantly related.

Proof. Let C be the graph coordinate of (Y', Y"), let B be the graph coordinate
of (Y, Y"), and let A be the graph coordinate of (Y, Y'). The proof is based on
(2.5). The first step is to compute L(U, V) =PKY,(P'U, P'Vy— K, (U, V) for
U, V€ Z(Y). The facts that PJ'CP'T'(J'P'U, P'V) = JCP'PT(JU, V), and that
CP' = B — A imply

PK,.(P'U,P'V) —Ky(U, V) =—JAPTWUU, V) + JAPT(JV, U).

Using (1.3), a calculation shows that in (2.5) the terms in PT and S from L
cancel the terms in PT and S from N, and so (2.5) reduces to

(3.3) w(V,S'(P'U,P'Wy—S(U, W) = — w(W,(V,A)U)).

Since dw = 0, Proposition 2.4(iv) implies that w(V, P§(U, W)) = — w(W, (VVA) .
- (D). Now if W is ¥ -parallel along X, it is not hard to see that P'W is V'-parallel
along X. Therefore,

PS(U, W) =PV W —V W) =P, , ,W+AW—T,W).

Substituting this expression into (3.3) gives the desired result. The proof that
V and V' are semi-covariantly related when V and V' are determined by (0, KY)
and (O, 12},,) is similar. =

An important fact used in the proof of Proposition 3.1 is that the graph coordi-
nates A, B, and C of the pairs (Y, Y'), (Y, Y"), and (Y', Y") satisfy. CP' = B — A.
Geometrically this formula is a generalization of the first derivative of the cocycle
condition on coordinate charts. Physicaily it is analogous to the addition law
of velocities in Galilean Relativity. Also, note that the method used in Proposition
3.1 to construct covariantly related connections is in spirit similar to the techni-
ques used in classical geometry to construct covariant derivatives. It can be
shown that the above connections are the only linear connections constructed
from PT and A that satisfy Definition 3.1.

4. HOMOGENEITY CONDITIONS

This section studies the effects of homogeneity criteria on nonlinear geometries.
In this section as in Section 3 assume dw = 0. To introduce the notion of homo-
geneity into this construction, fix once and for all an integrable Lagrangian
distribution X and a 1-form « that satisfies (i) a(¥) =0 for V&€ Z(X) and
(ii) da = w. The existence of X and o implies that if the leaves of X are absolutely
parallelizable, then M is symplectically equivalent to a cotangent bundle. Let
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X, be the vector field along X defined by i(X )w = a. The fact that X _ acts as
a homogeneity operator is suggested by the fact that L Xaw = w.

DEFINITION 4.1. Let k be an integer. A pair of Lagrangian distributions (Y, Y"),
each tranverse to X, is said to be homogeneous of degree k if the graph coordinate
A of (Y,Y") satisfies VXQA = kA, where ¥V is the Bott connection defined by
(X, Y)and w.

PROPOSITION 4.1. Homogeneity of degree k is an equivalence relation on the set
of Lagrangian distributions transverse to X.

Proof. This is a consequence of Proposition 2.4. =

If the homogeneity relation is of degree 1, it is possible to label the equivalence
classes in the following sense.

PROPOSITION 4.2. Let (Y, Y') is homogeneous of degree 1. IfV and V' are the
Bott connections defined by Y and Y' and if P' is the projection defined by
Y', then Vy X, = Vp X for Ue Z(Y).

Proof. It is not hard to see that X has the property that VVXO‘ =V for Ve
€ Z (X). The conclusion follows from this fact and Proposition 2.4 (iii). =

Proposition 4.2 says that the 1-form VX o s pointwise constant when evaluated
along equivalent degree 1 Lagrangian distributions. In particular, if M = T*N
and « is the canonical !-form, then VXQ = 0 along the elements of the degree
1 equivalence class that contains the coordinates. In general, call the degree 1
equivalence class with this property the coordinate class. Denote the coordinate
class by %,

Example 4.1. In the case where M = T*N, 03/0 contains elements that are not
defined by coordinate charts on N. Let a be the canonical 1-form and let ¢,
be the flow of X . Let Y be a Lagrangian integrable distribution. If Y is homo-
geneous, that is ¢,,Y =7, then Y € % . A local integral manifold of Y can be
locally identified with a closed 1-form on N. l-forms determined by Y are
of interest in relativity because they correspond to the local time functions
of synchronous observers. A set of synchronous observers shall be called complete
if the corresponding set local time functions locally foliate the light cone. In a
flat space-time, constant time-like linear combinations of the coordinate func-
tions determine a complete set of synchronous observers.
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DEFINITION 4.2. ((X, Y), g, w) is said to be semi-projectable if there exists an
r € IR such that for Ue Z(Y)

4.H PT(X_, U)=rU.

where T is the torsion of the almost complex connection defined by (0, 0).

Definition 4.2 is a computationally efficient homogeneity condition on ((X,
Y). g w). It is equivalent to the following more natural criterion.

PROPOSITION 4.3 ((X, Y), g, w) is semi-projectable if and only if the almost
complex connection for (X, Y), g, w) defined by (0, 0) satisfies for V & 2 (X)
VX, =0 -nV.

Proof. Easy consequence of (4.1) and (1.3). =

Proposition 4.3 shows that semi-projectability is a property of the metric,
and is independent of the choice of Y. The notion of a semi-projectable triple
is weaker than similar conditions given in [2] and [6] where it is assumed that
r=20.

Example 4.2. If PT is asin Example 1.4. and if PT is semi-projectable, then there
is k€ IR so that f=1log (pX) where p = lg(X,. X)) ]1/2. If q(X_, X, )<0, then

k
(4.2) PT(V,U)= vy @UU, X)IV + q(V, X )U—qUU, V)Z),

P

and so r = — (k/2).

Given a triple ((X,Y), g, w) and the homogeneity operator Xa, the vector
field Z=JX_is called the dynamical vector field determined by ((X, Y), g, w).

Example 4.3. Let M = T*N and let o be the canonical 1-form. If X is the vertical
distribution, for p € T*N let ip :Xp—> T*N"(p) be the natural identification, and
let ]'p : TNﬂ(p)—» Xp* be dual to z'pA If g is a metric along X, then g induces a Legen-
dre transformation ! : T*N— TN as follows. For p &€ T*N define ?\p(-:X;‘ by
)\p = i(Xa)gp. Let I(p) = j;l 7\p. For any Z € 7 (T*N) that satisfies g(X _, U) =
= —w(Z,U) for all Ue Z(X), it can be seen that 7,Z = [. Further, if Y is
integrable, then a vector field, that corresponds to the image of a leaf of Y under
the Legendre transformation /, is a geodesic vector field for the second order system
determined by Z. If ¥ € @, this set of vector fields can be viewed as the coordi-
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nate directions of the observers whose time functions are determined by Y.

When a triple ((X, Y), g, w) is semi-projectable there is a special relation between
Z and the associated connection theory. Suppose that Y € @, then V,Z =
=JV,X = JP'T(X,Z), It shall be shown that if 7# 1, then there exists Y" €
€ g, such that if C is the graph coordinate of (Y, Y"), then

43) V,Z = (1 —nicz.

Note that this expression has the form of a force law scaled by the real number

(1—r).

LEMMA 4.1. If Y € Y, and if (X,7Y), g, w) is semi-projectable, then for any
Ve Z(X)and U I (Y) (Y, P TI(V, V) =0.

Proof. Let Ue X (Y) be v-parallel along X and let V€ & (X) be V-parallel
along Y. First show that VX =0 implies that R(X,, V)V = 0. Since R(X,
UV =PU, (X, Wl and [U, V]€ Z(Y) and [X,, Ul € Z(Y), this follows by
the Jacobi identity. Next express R in terms of R and the difference tensor
S=V —V. Using the fact that (4.1) implies that S(X_, ¥) =rV, a computation
shows

RWU,X)V=RWU,X)V+(Vy PlT)(U. V) + rPLT(U, V).

Also, Q(X_, V, U,JW) = 0 and so by (1.9) R(U, X))V = 0. Therefore (V, PLT)

(U, Vy=—rP'T(U, V), and a change of connection implies that (V PlT)
(U, V)y=0. ]

PROPOSITION 4.4. Let (X, Y), g, w) be semi-projectable with r#+ land Y € %Yy

There exists Y' € %, independent of the choice of Y such that if C is the graph

coordinate of (Y, Y'), and if T is the torsion of the almost complex connection for
(X, Y), g, w)defined by (0, 0), then P+ IX,2)y=(1-r)cz.

Proof. let Y& %, and let H be a hypersurface transverse to the flow of X
For pe H let B € sp (TM) with ran (B )C X C ker (B ), such that BZ
=P'T(X, z), Extend B to M by V- translatlon along the flow of X_ such that
V B B It follows from Lemma 4.1 that BZ —P* TX,.2Z)is a solutxon to
the o.d.e. V U=2(1—r)U, and so BZ=P'T(X_,Z)everywhere. Define Y’
so that C—-(l/(l —r))B is the graph coordinate of (Y, Y'). For any other
Y'e %, let S be the difference between the almost complex connections \%
and V" for (X, Y), g, w) and ((X, Y"), g, w) defined by (0, 0), and let T be the
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torsion of V”. Then (4.1) implies that S(Z, Z) = 0 and so (2.4) gives (1/(1 —7r)) -
“PUTX . Z')V=CZ—~AZ=C"Z" where 4 and C" are the graph coordinates
of (Y. Y yand (Y", Y"). »

DEFINITION 4 3. A semi-projectable triple is geodesible if Z is a geodesic vector
field.

Note that (2.4) implies that if Y'is the distribution constructed in Proposition
4.4, then ((X.Y"). g,w) is geodesible. If » = 1, (2.4) implies that PLT(XO, Z) is
independent of the choice of Y. Consequently, in this case, if there is an element
of the coordinate class for which Z is geodesic, then for every element of the
coordinate class Z is geodesic. In the case of geometries of Example 4.3 with
r=1, it can be seen from (4.2) that for a curve y on N, parallel translation
alongy = 171(7) projects to Fermi translation along «.

Example 4.4. In relativity a geodesible triple (X, Y'). g, w) with Y' & %, and
Y' integrable represents a complete set of inertial observers. If Z is the dynamical
vector field determined by a semi-projectable triple ((X, ¥V), g. w) with Y € WY o
then (4.3) expresses the pseudo-gravitational force observed by Y, and therefore
gives a representation of the equivalence principle. When » = 0 and g is the flat
metric, Example 2.1 shows that this relation reduces to the usual representation
of the equivalence principle in flat space. When » = 0 and g is not flat, (4.3) is
still valid. However, a complete set of inertial observes can no longer be associat-
ed with a single chart. In this case ¥'is a distribution whose integral submanifolds
are solutions to the time independent Hamilton-Jacobi equations determined by

g.

If ((X,7Y), g, w)issemi-projectable and Y & Y then under certain conditions
it is possible to construct from the torsion of the almost complex connection
defined by (0, 0) the graph coordinate of a Lagrangian distribution Y' € @, such
that ((X, Y'). g, w) is geodesible. To see this, introduce the following notation,
For L€ 7 ®2(M) define L -7 V(M) .7 V(M) by L(C) =% (L © C) where
% is the contraction of C on the second and third entries of L.

Note that /2= 7o I is the identity, and if 4 € .“7(1‘1)(M), then I ® A(C) = CA
and 4 @ I(C) = AC.

PROPOSITION 4.6. For Y € @0, suppose that (X, Y), g, w) is semi-projectable
with r# 1 and let T be the torsion of the almost complex connection defined
by (0, 0). Define E € 7 MD) by EU = (1/2(1 — ) PT(U, Z)y and T € 7 1D (M)
by

1

U=s —— PTX, U)+
21 —n)
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+ —1— [JPT(P'T(X , Z), U) + S(P*T(X , Z), JU)],

2(1 —r)? * *
and let H=1®FEJ+JE®I (i)If (3r—2)/(2r—2) is not an eigenvalue of JE
and (ii) if the difference between any two eigenvalues of JE is never equal to 1,
then I’ + H is invertible and there exists a Lagrangian distribution Y'€ %Y,
such that (X, Y"), g, w) is geodesible and C = (I* + H)~Y(T') is the graph coordi-
nate of (Y, Y).

Proof. (ii) implies I? + H is invertible and so C is well defined. To verify that
if Y’ is defined relative to Y by C, then ((X,Y'), g, w) is geodesible and
Y' € @, one must show that (1) Cesp(TM), (2) VXQC= C,and (3) (1/(1—
-r)) PJ-T(Xa, Z)=CZ. (1) follows since (1.3) and (1.4) imply that I" € sp (TM)
and that sp (TM) is an invariant subspace for I’ +H To prove (2) note that
Proposition 4.3 implies that for U, V€ Z(X) R(U, V)X_= 0. Applying block
symmetry along X, this is equivalent to R(X_, U) = 0 for U€ Z (X). But, (1.6)
and R(X_, U) =0 imply that for Ue Q”(Y) and V€ Z(X) (V PT)(V 0 =
= —PT(V, U). This result implies that V F I' and V (12+H) 0, and so
V C C. (3) follows from (i), as (i) 1mp11es that CZ = (1/(1 —r))P‘LT(X Z)
is the unique solution to CZ + H(C)Z =T'Z. Finally, if Y" € @ and if I> + H"
and T'" are constructed from the torsion of the almost complex connection for
((X,Y"), g, w) defined by (0, 0), then (2.4) implies that if C" is the graph coordi-
nate of (Y",Y"), then U2+ H'YC")—-T" =%+ HY(C)—T = 0. Since 12+ H
is invertible implies that I?> + H” is invertible, it follows that C” =
=*+H"Y ("), .

The distribution constructed in Proposition 4.6 is the natural generalization
of the horizontal distribution of the Levi-Civita connection to nonlinear geome-
tries. It is easy to see that it agrees with the horizontal distribution of the Cartan
connection in Finsler geometry, and in fact, when this distribution is used in
Proposition 3.1, one obtains Rund and Cartan connections for an arbitrary
semi-projectable triple.
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